56 research outputs found

    Mechanical properties of micro- and nanocapsules: Single-capsule measurements

    Get PDF
    AbstractCapsules of micron and sub-micron dimensions are abundant in nature in the form of bacterial or viral capsids and play an increasing role in modern technology for encapsulation and release of agents. The capsules' mechanical properties are of great importance in this context not only for stability but as well for transport properties in flow, rheology or adhesion. Thus, techniques that allow for single-capsule mechanical characterization have caught much attention recently and we summarize experimental developments in this field as well as theoretical background of capsule deformation with special attention to small deformation measurements. Deformation studies on polyelectrolyte multilayer capsules are introduced as a case study, since they can be tailored in their geometry and composition and are thus well-suited as a model system

    Curvature-controlled defect dynamics in active systems

    Full text link
    We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have found that collective motion patterns are particularly rich on ellipsoids, with four umbilics where vortices tend to be located near pairs of umbilical points to minimize their interaction energy. Our results provide a new perspective on the migration of living cells, which most likely use the information provided from the curved substrate geometry to guide their collective motion.Comment: Accepted manuscript. 8 pages, 7 Figures. Movies of the motion patterns can be found at https://www.youtube.com/playlist?list=PLEsE7_tnqXZ_U258VwxES8KAJTV_eO43

    The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone

    Full text link
    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization

    The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical

    Get PDF
    Dynamic processes modify bone micro-structure to adapt to external loading and avoid mechanical failure. Age-related cortical bone loss is thought to occur because of increased endocortical resorption and reduced periosteal formation. Differences in the (re)modeling response to loading on both surfaces, however, are poorly understood. Combining in-vivo tibial loading, in-vivo micro- tomography and finite element analysis, remodeling in C57Bl/6J mice of three ages (10, 26, 78 week old) was analyzed to identify differences in mechano- responsiveness and its age-related change on the two cortical surfaces. Mechanical stimulation enhanced endocortical and periosteal formation and reduced endocortical resorption; a reduction in periosteal resorption was hardly possible since it was low, even without additional loading. Endocortically a greater mechano-responsiveness was identified, evident by a larger bone-forming surface and enhanced thickness of formed bone packets, which was not detected periosteally. Endocortical mechano-responsiveness was better conserved with age, since here adaptive response declined continuously with aging, whereas periosteally the main decay in formation response occurred already before adulthood. Higher endocortical mechano-responsiveness is not due to higher endocortical strains. Although it is clear structural adaptation varies between different bones in the skeleton, this study demonstrates that adaptation varies even at different sites within the same bone

    Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone

    Get PDF
    Various tissue types, including fibrous connective tissue, bone marrow, cartilage, woven and lamellar bone, coexist in healing bone. Similar to most bone tissue type, healing bone contains a lacuno-canalicular network (LCN) housing osteocytes. These cells are known to orchestrate bone remodeling in healthy bone by sensing mechanical strains and translating them into biochemical signals. The structure of the LCN is hypothesized to influence mineralization processes. Hence, the aim of the present study was to visualize and match spatial variations in the LCN topology with mineral characteristics, within and at the interfaces of the different tissue types that comprise healing bone. We applied a correlative multi-method approach to visualize the LCN architecture and quantify mineral particle size and orientation within healing femoral bone in a mouse osteotomy model (26 weeks old C57BL/6 mice). This approach revealed structural differences across several length scales during endochondral ossification within the following regions: calcified cartilage, bony callus, cortical bone and a transition zone between the cortical and callus region analyzed 21 days after the osteotomy. In this transition zone, we observed a continuous convergence of mineral characteristics and osteocyte lacunae shape as well as discontinuities in the lacunae volume and LCN connectivity. The bony callus exhibits a 34% higher lacunae number density and 40% larger lacunar volume compared to cortical bone. The presented correlations between LCN architecture and mineral characteristics improves our understanding of how bone develops during healing and may indicate a contribution of osteocytes to bone (re)modeling

    Reduction of fibrillar strain-rate sensitivity in steroid-induced osteoporosis linked to changes in mineralized fibrillar nanostructure

    Get PDF
    As bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour – and the alterations in metabolic bone disease – is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing’s syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10-4 to 10-1 s-1. We find that the effective fibril- and mineral-modulus and fibrillar-reorientation show no significant increase with strain-rate in osteoporotic bone, but increase significantly in normal (wild-type) bone. By applying a fibril-lamellar two-level structural model of bone matrix deformation to fit the results, we obtain indications that altered collagen-mineral interactions at the nanoscale – along with altered fibrillar orientation distributions – may be the underlying reason for this altered strain-rate sensitivity. Our results suggest that an altered strain-rate sensitivity of the bone matrix in osteoporosis may be one of the contributing factors to reduced mechanical competence in such metabolic bone disorders, and that increasing this sensitivity may improve biomechanical performance
    corecore